
Hyperbolic Deep Learning for Foundation Models: A Tutorial

Tutor: Neil He, Menglin Yang, Rex Ying
Contributor: Ngoc Bui, Hiren Madhu

neil.he@yale.edu, menglin.yang@outlook.edu, rex.ying@yale.edu



Outline

7/5/2025 2Neil He, Menglin Yang, Rex Ying, Yale University

Preliminary

Motivation

Hyperbolic 
Geometry

Building Blocks

Basic Hyperbolic 
NN Operations

Hyperbolic NN 
Architectures

Hyperbolic 
Foundation 

Models

Hyperbolic LLMs & 
Transformers

Hyperbolic Vision 
Foundation 

Models

Hyperbolic Multi-
Modal Foundation 

Models

Our goals is to introduce:
1. Motivations for Hyperbolic Foundation Models
2. Hyperbolic Geometry Basics
3. Hyperbolic Basic Neural Operations
4. Current Methods in Hyperbolic Foundation Models
5. Future Directions



Part 1: Preliminary
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Part 1: Preliminary – Goals (45 Min):
1. Motivate Hyperbolic Geometry for Foundation Models
2. Introduce Basics of Hyperbolic Geometry



Part 2: Building Blocks
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Part 2: Building Blocks – Goals (55 Min):
1. Introduce Basics Hyperbolic Neural Network Operations 

(e.g. Linear Transformations, Attention Mechanisms)
2. Introduce Basic Hyperbolic Neural Networks Models



Part 3: Hyperbolic Foundation Models
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Part 3: Hyperbolic Foundation Models – Goals (70 Min):
1. Introduce Current Methods in Hyperbolic Foundation 

Models
2. Discuss Potential Feature Directions



Part 1: Background: Motivation & Theory (40 Minutes)



Token Relationship

• The sun rises above the river.

• The river flows through the forest.

• The forest is dense with tall trees.

• Trees sway gently in the wind.

• The wind carries the scent of flowers.

• Flowers bloom brightly under the sun.

• The sun sets over the mountains.

• The mountains echo with the sound of birds.

• Birds fly freely across the sky.

• The sky turns dark as stars appear.
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How do we analyze token relationship?
• Word Transition: which words lead to each other 

in a piece of writing?
• Co-occurrence: which words tend to appear 

together in a Transformer input/output context?
• Pointwise Mutual Information: how many times 

more often two words co-occur than if they 
were independent?



Token Relationship Example: Word Transition

• “co-occurrence” of window size 1
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above dense flows forest is rises river sun tall the through trees with
above 0 0 0 0 0 0 0 0 0 1 0 0 0
dense 0 0 0 0 0 0 0 0 0 0 0 0 1
flows 0 0 0 0 0 0 0 0 0 0 1 0 0
forest 0 0 0 0 1 0 0 0 0 0 0 0 0
is 0 1 0 0 0 0 0 0 0 0 0 0 0

rises 1 0 0 0 0 0 0 0 0 0 0 0 0
river 0 0 1 0 0 0 0 0 0 0 0 0 0
sun 0 0 0 0 0 1 0 0 0 0 0 0 0
tall 0 0 0 0 0 0 0 0 0 0 0 1 0
the 0 0 0 2 0 0 2 1 0 0 0 0 0

through 0 0 0 0 0 0 0 0 0 1 0 0 0
trees 0 0 0 0 0 0 0 0 0 0 0 0 0
with 0 0 0 0 0 0 0 0 1 0 0 0 0

Neil He, Menglin Yang, Rex Ying, Yale University



Token Relationship Example: Word Transition

7/5/2025 9

above dense flows forest is rises river sun tall the through trees with
above 0 0 0 0 0 0 0 0 0 1 0 0 0
dense 0 0 0 0 0 0 0 0 0 0 0 0 1
flows 0 0 0 0 0 0 0 0 0 0 1 0 0
forest 0 0 0 0 1 0 0 0 0 0 0 0 0
is 0 1 0 0 0 0 0 0 0 0 0 0 0

rises 1 0 0 0 0 0 0 0 0 0 0 0 0
river 0 0 1 0 0 0 0 0 0 0 0 0 0
sun 0 0 0 0 0 1 0 0 0 0 0 0 0
tall 0 0 0 0 0 0 0 0 0 0 0 1 0
the 0 0 0 2 0 0 2 1 0 0 0 0 0

through 0 0 0 0 0 0 0 0 0 1 0 0 0
trees 0 0 0 0 0 0 0 0 0 0 0 0 0
with 0 0 0 0 0 0 0 0 1 0 0 0 0

Word “the”: Token frequency is 5, out-degree is 5, in-degree is 2
Observations
• There is significant patterns in token relationships
• Tokens are not equal (in terms of frequencies)

Neil He, Menglin Yang, Rex Ying, Yale University



Token Relationship Example: Word Transition
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above dense flows forest is rises river sun tall the through trees with
above 0 0 0 0 0 0 0 0 0 1 0 0 0
dense 0 0 0 0 0 0 0 0 0 0 0 0 1
flows 0 0 0 0 0 0 0 0 0 0 1 0 0
forest 0 0 0 0 1 0 0 0 0 0 0 0 0
is 0 1 0 0 0 0 0 0 0 0 0 0 0

rises 1 0 0 0 0 0 0 0 0 0 0 0 0
river 0 0 1 0 0 0 0 0 0 0 0 0 0
sun 0 0 0 0 0 1 0 0 0 0 0 0 0
tall 0 0 0 0 0 0 0 0 0 0 0 1 0
the 0 0 0 2 0 0 2 1 0 0 0 0 0

through 0 0 0 0 0 0 0 0 0 1 0 0 0
trees 0 0 0 0 0 0 0 0 0 0 0 0 0
with 0 0 0 0 0 0 0 0 1 0 0 0 0

Most other token frequency, out/in degree are 1 or 0

Observations
• There is significant patterns in token relationships
• Tokens are not equal (in terms of frequencies)

Neil He, Menglin Yang, Rex Ying, Yale University



Token Relationship Example: Word Transition
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• Observations

• There is significant patterns in token relationships

• Tokens are not equal (in terms of frequencies)

• Tokens have underlying structure

Neil He, Menglin Yang, Rex Ying, Yale University



Scale-Free Property in Token Relationships

• Scale-free property across foundation models and modalities

• Very few (exponentially) tokens appear very frequently/have large norm
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Token Frequency (x-axis) v.s. Token count (y-axis) 
“How many tokens appears x number of times”

Token norm (x-axis) v.s. Token count (y-axis) 
“How many tokens have a norm of value x”

Corpus: RedPajama (subset) (arXiv, C4, Common Crawl, GitHub, Wikipedia, and StackExchange); Mathematical Reasoning (GSM8K, MATH50K, MAWPS, 
SVAMP); Common Sense Reasoning (BoolQ, WinoGrande, OpenBookQA)



Quantitate Analysis: Hyperbolicity
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Hyperbolicity(∂)=0

Hyperbolicity(∂)=0.25

Hyperbolicity(∂)=0.5

Hyperbolicity(∂)=0.75

∂ = 0, tree-like structure, no cycles.

∂ = 0.25, one cycle, slight deviation from tree metric. 

∂ = 0.5, moderate interconnectedness, more loops.

∂ = 0.75, dense structure, multiple loops, far from a tree.

Smaller hyperbolicity indicates fewer cycles, 

with certain nodes playing crucial roles. 

Hyperbolicity quantifies the distance of a 
graph from a tree-like structure

Neil He, Menglin Yang, Rex Ying, Yale University



Hierarchies in LLM Token Distribution

• Hyperbolicity (0-1): measures how much data points are tree-like 
(hierarchical)
• Lower values indicate more hierarchical distribution
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Reference values

Indicates hierarchical structure in token distribution

Neil He, Menglin Yang, Rex Ying, Yale University



Embedding Hyperbolicity vs Graph Hyperbolicity
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Positive correlation between graph hyperbolicity and embedding hyperbolicity

Compute token embedding hyperbolicity as a proxy for structure; lower values indicate a more tree-like shape.

Neil He, Menglin Yang, Rex Ying, Yale University



Embedding Norm vs Token Frequency
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Embeddings Space Choices

• The embedding space is crucial for a model to faithfully represent such 
relationships between data points 
• Should Euclidean geometry remain the de facto choice for foundation models?
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Embedding space ℝ𝒏 

Generation / Downstream Tasks
Foundation 

Model

Neil He, Menglin Yang, Rex Ying, Yale University



Embeddings Space Intuition
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above dense flows forest is rises river sun tall the through trees with

above 0 0 0 0 0 0 0 0 0 1 0 0 0
dense 0 0 0 0 0 0 0 0 0 0 0 0 1

Intuition: Co-occurring words 
should be embedded closer 
together!

Embedding space ℝ𝒏 

above
the

dense

with



Issues with Euclidean Embeddings: Distortion

• Euclidean space leads to significant distortion regardless of the embedding 
dimensions
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“There is a performance bottleneck on how well Euclidean 
foundation models can represent complex token relationships”

Neil He, Menglin Yang, Rex Ying, Yale University



Issues with Euclidean Embeddings: Dimension Dilemma

• Euclidean space face the dilemma of dimension-distortion tradeoffs
• High dimensionality is often required to embed complex token relations in Euclidean 

space with (relatively) low distortion
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“Euclidean foundation models have limited scalability”

Neil He, Menglin Yang, Rex Ying, Yale University



Example: Embedding Tree-structured Data
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Example: Embedding Tree-structured Data
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Example: Embedding Tree-structured Data
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So far, so good
Nodes are close i.f.f. they
are connected by an edge

Neil He, Menglin Yang, Rex Ying, Yale University



Example: Embedding Tree-structured Data
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Example: Embedding Tree-structured Data
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But the outermost 
nodes are becoming 
increasingly close to one 
another.
….
Even though they are 
not connected by an 
edge in the graph.

Neil He, Menglin Yang, Rex Ying, Yale University



Example: Embedding Tree-structured Data
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But the outermost 
nodes are becoming 
increasingly close to one 
another.
….
Even though they are 
not connected by an 
edge in the graph.

Neil He, Menglin Yang, Rex Ying, Yale University



Example: Embedding Tree-structured Data
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Things only get worse!
We have lost our 
property:

“close i.f.f share edge”

Neil He, Menglin Yang, Rex Ying, Yale University



Potential Solution: Hyperbolic Embedding Space
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The volume of a ball in the hyperbolic 
space grows exponentially with its radius

Neil He, Menglin Yang, Rex Ying, Yale University



Euclidean Embedding: Common Misunderstanding

• Nash Embedding Theorem (and similar): roughly, any n-dimensional 
Riemannian manifold can be embedded in 𝑅2𝑛

• This is an embedding of manifolds instead of metric spaces, i.e. distance is still 
globally distorted
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Isometric Embedding of Manifolds
• Shortest path between points are not 

necessarily the same globally
• e.g. Embedding sphere in Euclidean 

space

Isometric Embedding of Metric Spaces
• Distance between any two points 

(global behavior) is preserved in the 
new space

• e.g. Rotation

π π π π
1

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Geometry for Foundation Models

We need an embedding space that can 
better represent token relationship!
• The distance between low-level tokens on different branches 

should be maximized and far away

• The distance between a high-level token and a low-level 
token should be minimized and close

• Solution: any tree (i.e. hierarchical 
distribution) can be embedded into 
hyperbolic space with arbitrarily low 
distortion!!

7/5/2025 30Neil He, Menglin Yang, Rex Ying, Yale University



Riemannian Manifold

• Manifold: high-dimensional surface

• Riemannian Manifold 𝓜

• Equipped with 
• Tangent space 𝒯𝑝ℳ: an ℝ𝑑  that approximates the 

manifold at any point 𝑝 ∈ ℳ

• Inner product 𝑔𝑝: 𝒯𝑝ℳ × 𝒯𝑝ℳ → ℝ

• Both functions vary smoothly (differentiable) 
on the manifold
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𝑢

𝑣

𝑢, 𝑣 ∈ 𝒯𝑝ℳ, 𝑔𝑝(𝑢, 𝑣) ∈ ℝ

Neil He, Menglin Yang, Rex Ying, Yale University



Tangent Space

• Curve: smooth path along manifold 𝛾: 0,1 → ℳ

• Speed: direction of change along the curve ሶ𝛾: [0,1] → 𝒯𝑥ℳ

• Tangent space 𝓣𝒙𝓜: space of speed vectors 𝒗 of all curves 𝛾 that go 
through point 𝒙 on the manifold ℳ
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Curvature 

sectional curvature

• The curvature (sectional curvature) at a point measures how drastically a 
surface bends away from its tangent plane at this point 

High-level Intuition:
• If the surface locally lives entirely on one side of the tangent space 𝒯𝑝ℳ ⇒ Positive 

curvature at point 𝑝

• If the tangent space 𝒯𝑝ℳ cuts through the surface ⇒ Negative curvature at point 𝑝

• If the surface has a line along which the surface agrees with the tangent space 
𝒯𝑝ℳ ⇒ Zero curvature at point 𝑝
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positive curvature negative curvature zero curvature
Neil He, Menglin Yang, Rex Ying, Yale University

https://en.wikipedia.org/wiki/Sectional_curvature


Hyperbolic Space

• Hyperbolic space is a Riemannian manifold with constant negative curvature 
− 1/𝐾, where (𝐾 > 0)
• Becomes Euclidean when 𝐾 → ∞

• In Euclidean space, we can also find manifolds with constant negative 
curvature:
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Periodic Amsler Surfaces two sheet hyperboloid (source: Wikipedia)

Neil He, Menglin Yang, Rex Ying, Yale University

https://maths.dur.ac.uk/users/christopher.prior/hyperbolic1.pdf
https://maths.dur.ac.uk/users/christopher.prior/hyperbolic1.pdf
https://maths.dur.ac.uk/users/christopher.prior/hyperbolic1.pdf


Hyperbolic Space and Minkowski Space

• Hyperbolic space can be naturally embedded into a Minkowski Space

• The Minkowski metric in the Minkowski space is different from the Euclidean 

metric.

• Euclidean Metric: 𝑔𝐸 𝒖, 𝒗 = 𝑢0𝑣0 + 𝑢1𝑣1 + ⋯ + 𝑢𝑑𝑣𝑑

• Minkowski Metric: 𝑔𝑀 𝒖, 𝒗 = ±(𝑢0𝑣0 − 𝑢1𝑣1 − ⋯ − 𝑢𝑑𝑣𝑑)

• Without loss of generality we can take the + sign

• Note: dimension 1 is treated differently in Minkowski Space.
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Time

Space

Space

Neil He, Menglin Yang, Rex Ying, Yale University



Inner Product

• Hyperboloid model as a Riemannian manifold:
• With Constant Minkowski metric:

. , . ℒ ∶  ℝ𝑑+1 × ℝ𝑑+1 → ℝ

• Hyperboloid model ℍ𝑑,𝐾 = {𝒙 ∈ ℝ𝑑+1: 𝒙, 𝒙 ℒ = −𝐾}, −
1

𝐾
 is the curvature

• Note:  the points in hyperboloid model ℍ𝑑,𝐾are represented in (𝑑 + 1)-dimensional 
Minkowski space. 

• The metric of hyperboloid model is different from the Euclidean metric!
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Time-like

𝒙, 𝒚 ℒ = −𝑥0𝑦0 + 𝑥1𝑦1 + … + 𝑥𝑑𝑦𝑑

Space-like

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperboloid in Different Spaces
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Geodesic distance in Euclidean hyperboloid: 

𝑑𝐸 𝒙, 𝒚 = 2(1 − 𝑔𝐸 𝒙, 𝒚 ) 
(with normalized 𝒙 and 𝒚)

Two sheet hyperboloid in 3D Euclidean space 2D Hyperboloid model in 3D Minkowski space
Geodesic distance in Minkowski hyperboloid: 

𝐷𝑀
𝐾 𝒙, 𝒚 = 𝐾arcosh(−

𝑔𝑀 𝒙,𝒚

𝐾
)

Euclidean Metric 
𝑔𝐸 𝒙, 𝒚 = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3

Minkowski Metric 
𝑔𝑀 𝒙, 𝒚 = −𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3

This is hyperbolic

Performing deep learning operations in hyperbolic space is non-trivial

Neil He, Menglin Yang, Rex Ying, Yale University



Poincaré Model

• Poincaré Model

• Radius proportional to 𝐾 (−
1

𝐾
 is the 

curvature)

• Open ball (exclude boundary)

• Each triangle in the figure 
has the same area

• Exponentially many triangles with the same 
area towards the boundary of Poincaré Ball

Poincaré: intuitive visualization
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Other models exist as well, e.g. Klein model



Equivalence 

• 𝑑-dimensional Poincaré model and 
𝑑 + 1 -dimensional hyperboloid 

model are equivalent!

• 2d Poincaré model can be derived 
using a projection of 3d hyperboloid 
model through a specific point onto 
the unit circle of the 𝑧 = 0 plane.
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Equivalent

𝑷

Projection from 𝑷

Neil He, Menglin Yang, Rex Ying, Yale University



Geodesic

• Geodesic: shortest path in manifold
• Analogous to straight lines in ℝ𝑛

• Curved in hyperbolic space

• Geodesics visualization in Poincaré model: curved!

Set of geodesic lines from the
red point to boundary of the 
Poincare ball that are parallel 
to the blue line 
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Geodesic Distance

• Geodesic distance between 𝒙 and 𝒚 for ℍ𝑑,K:

𝐷ℒ
𝐾 𝒙, 𝒚 = 𝐾arcosh(−

𝒙, 𝒚 ℒ

𝐾
) 

• Negative Lorentz Distance: 𝐷ℒ
𝐾 𝒙, 𝒚 =

1

𝐾
− 2 𝒙, 𝒚 ℒ

• The more negative the curvature:

• the more geodesics bends inward

• geodesic distance increases

Dark blue: high curvature boundary and geodesics
Light blue: low curvature boundary and geodesics

7/5/2025 Rex Ying, CPSC 483: Deep Learning for Graph-structured Data 41

arcosh 𝑥 = ln(𝑥 + 𝑥2 + 1)



Tangent Space

• Tangent space expression under hyperboloid model ℍd,K at point 𝒙:
• 𝒯𝒙ℍd,K = {𝒗 ∈ ℝd+1: 𝒗, 𝒙 ℒ = 0}

• A vector space (linear structure) with the same dimension as the 
hyperboloid model: it is Euclidean!

• The best linear approximation to the manifold ℍd,K at point 𝒙

Hyperboloid model

𝒅: hyperbolic space dimension
𝑲: negative inverse of curvature

Tangent space at north pole 𝑜
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Mapping to and from Tangent Space

• Exponential map: 𝒯𝒙ℍd,K → ℍd,K

• from tangent space (Euclidean) to 
manifold

• Logarithmic map: ℍd,K → 𝒯𝒙ℍd,K

• from manifold to tangent space

• inverse operation of exponential map 𝐞𝐱𝐩(∙)
𝐥𝐨𝐠(∙)
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𝐞𝐱𝐩(∙)
𝐥𝐨𝐠(∙)

Exponential Map: 

• For hyperboloid model  ℍd,K = 𝒙 ∈ ℝ𝑑+1: 𝒙, 𝒙 ℒ = −𝐾  at point 𝒙

• Exponential Map:  

 exp𝒙
𝐾 𝒗 = cosh

𝒗 ℒ

𝐾
𝒙 + 𝐾 sinh

𝒗 ℒ

𝐾

𝒗

𝒗 ℒ

• 𝒗 ∈ 𝒯𝒙ℍd,K

• cosh 𝑥 =
𝑒𝑥+𝑒−𝑥

2
 ,  sinh 𝑥 =

𝑒𝑥−𝑒−𝑥

2

• 𝒗 ℒ  = 𝒗, 𝒗 ℒ
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Logarithmic Map

• For hyperboloid model  ℍd,K = 𝒙 ∈ ℝ𝑑+1: 𝒙, 𝒙 ℒ = −𝐾  at point 𝒙

• Logarithmic map:  

log𝒙
𝐾 𝒚 = 𝐷ℒ

𝐾 𝒙, 𝒚
𝒚 +

1
𝐾

𝒙, 𝒚 ℒ𝒙

𝒚 +
1
𝐾

𝒙, 𝒚 ℒ𝒙
ℒ

• 𝒚 ∈ ℍd,K

• 𝐷ℒ
𝐾 𝒙, 𝒚 = 𝐾arcosh(−

𝒙,𝒚 ℒ

𝐾
) is geodesic distance
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𝐞𝐱𝐩(∙)
𝐥𝐨𝐠(∙)

Neil He, Menglin Yang, Rex Ying, Yale University



Parallel Transport (1)

• Parallel Transport:  transport a vector along a smooth curve on the surface 
and keep parallel to itself locally.
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Transport a tangent vector 𝒗 along the 
surface with non-zero curvature. When 
travelling from A to N to B back to A, the 
direction of the vector 𝒗 changes!

𝒗

𝒗

Neil He, Menglin Yang, Rex Ying, Yale University



Parallel Transport (2)

• Parallel Transport 𝑃𝒙→𝒚(∙) maps a vector 𝒗 ∈ 𝒯𝒙ℳ to 𝑃𝒙→𝒚(𝒗) ∈ 𝒯𝒚ℳ   

• If two points 𝒙 and 𝒚 on the hyperboloid ℍd,K are connected by a geodesic, 
then the parallel transport of tangent vector 𝒗 ∈ 𝒯𝒙ℍd,K to 𝒯𝒚ℍd,K:

• log𝒙
K is the Logarithmic map at point 𝑥.

• 𝐷ℒ
𝐾 𝒙, 𝒚 = 𝐾arcosh(−

𝒙,𝒚 ℒ

𝐾
) is geodesic distance
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𝑃𝒙→𝒚 𝒗 = 𝒗 −
log𝒙

𝐾 𝒚 , 𝒗 ℒ

𝐷ℒ
𝐾 𝒙, 𝒚 2

(log𝒙
K 𝒚 + log𝒚

K 𝒙)

Neil He, Menglin Yang, Rex Ying, Yale University



End of Part 1 (10 Minutes Break)



Part 2: Building Blocks for Hyperbolic Operations: Hyperbolic 
Neural Operations (50 Minutes)



Hyperbolic Operations: Difficulties

Addition in Euclidean Space
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x

x+y

out!!

Neil He, Menglin Yang, Rex Ying, Yale University

Addition in Hyperbolic Space?

Considerations: 

1. Satisfy manifold constraints

2. Satisfy neural operation 
properties



Strategy 1: Tangent-Space Based Operations (1)
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Recall: The tangent space is an Euclidean space 

• Intuition: we know how to perform Euclidean operations!

Image Source: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing  systems 32 (2019).

General Recipe: Use a Euclidean function 𝑓: ℝ𝑑+1 → ℝ𝑑+1 on the tangent space

• e.g. Linear transformer: 𝑓 𝑥 = 𝑊𝑥 + 𝑏, non-linear activation: 𝑓 𝑥 = 𝑅𝑒𝐿𝑈(𝑥)

Neil He, Menglin Yang, Rex Ying, Yale University



Strategy 1: Tangent-Space Based Operations (2)
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Image Source: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing  systems 32 (2019).

Map input to tangent space of the origin, so 𝑓 is a valid operation

Perform Euclidean operation

Lift the output back to ℍd,K

𝑓𝑇,𝐾 𝑥 = exp𝒐
𝐾(𝑓(log𝒐

𝐾(𝑥)))

Neil He, Menglin Yang, Rex Ying, Yale University



Strategy 1: Cons
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Computational Inefficiency: the repeated mappings to and 
from the tangent space cause  significant computational 
overhead

Image Source: Chami, Ines, et al. "Hyperbolic graph 
convolutional neural networks." Advances in neural information 
processing systems 32 (2019).

Numerical Instability: the mappings could cause numerical 
stability issues; e.g. in logarithmic map:

If the points are close together, we risk dividing by or calling 
𝑎𝑟𝑐𝑐𝑜𝑠𝑖𝑛 on 0.

log𝒙
𝐾 𝒚 = 𝐷ℒ

𝐾 𝒙, 𝒚
𝒚 +

1
𝐾

𝒙, 𝒚 ℒ𝒙

𝒚 +
1
𝐾

𝒙, 𝒚 ℒ𝒙
ℒ

Neil He, Menglin Yang, Rex Ying, Yale University



Strategy 1: Cons: Lorentz Rotation & Lorentz Boost
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Expressiveness Issues: transformations implemented through 𝑓𝑇,𝐾  might not cover all types of operations

• Lorentz linear transformation consists of a Lorentz Boost and  a Lorentz Rotation, but tangent-space-based 
operations do not cover all cases

Lorentz Boost Lorentz Rotation

Image Source: Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021).

Constant velocity 
transformation without 
rotating the spatial axis

Rotating the spatial axis 
by applying a rotation 

matrix on the space-like 
dimension

Neil He, Menglin Yang, Rex Ying, Yale University
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Solution: operate directly on the manifold “Fully Hyperbolic”

Two strategies: Pseudo Lorentz Rotation v.s. Pseudo Lorentz Boost

Reference: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing sy stems 32 (2019).
Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770–3781.

Pseudo Lorentz Boost : Use a Euclidean function 𝑓: ℝ𝑑+1 → ℝ𝑑+1

• e.g. Linear transformer: 𝑓 𝑥 = 𝑊𝑥 + 𝑏

Perform 𝑓 on 𝑥 ∈ ℍd,K

Compute the associating time-like dimension

Transformation on both time and space dimensions

Impose Lorentzian constraints

Neil He, Menglin Yang, Rex Ying, Yale University



Strategy 2: Fully Hyperbolic Operations Cont’d

7/5/2025 Rex Ying, CPSC 483: Deep Learning for Graph-structured Data 56

Image Source and Reference: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural informat ion processing systems 
32 (2019).

First coordinate of tangent 
vectors(of the origin) is 0, so the 
upper left entry does not 
affect  the output

𝑓𝑇,𝐾(𝑥) =

cosh(β)

−𝐾𝑥𝑡𝑖𝑚𝑒
0

0
sinh β 𝑊

−𝐾 |𝑊𝑥𝑠𝑝𝑎𝑐𝑒|

𝑥𝑡𝑖𝑚𝑒

𝑥𝑠𝑝𝑎𝑐𝑒
 ; β =

−𝐾arccosh −𝐾𝑥𝑡𝑖𝑚𝑒 𝑊

−𝐾𝑥^2𝑡𝑖𝑚𝑒
|𝑊𝑥𝑠𝑝𝑎𝑐𝑒|

Example: Tangent-space-based Linear 
Transformation 𝑓𝑇,𝐾 is a Pseudo Lorentz Rotation!

• 𝑓𝑇,𝐾 𝑥 = exp𝒐
𝐾(𝑓(log𝒐

𝐾(𝑥)))

•  𝑓 𝑥 = 𝑊𝑥 + 𝑏

∗ 0
0 𝑓(∙)

log𝒐
𝐾

𝑥𝑡𝑖𝑚𝑒

𝑥𝑠𝑝𝑎𝑐𝑒
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Solution: operate directly on the manifold “Fully Hyperbolic”

Two strategies: Pseudo Lorentz Rotation v.s. Pseudo Lorentz Boost

Pseudo Lorentz Rotation: Use a Euclidean function 𝑓: ℝ𝑑+1 → ℝ𝑑+1

• e.g. Linear transformer: 𝑓 𝑥 = 𝑅𝑒𝐿𝑈(𝑥)

Perform 𝑓 on the space-like dimension of 𝑥 ∈ ℍd,K

Compute the associating time-like dimension

Transformation on only the space dimension

Impose Lorentzian constraints

Reference: Chami, Ines, et al. "Hyperbolic graph convolutional neural networks." Advances in neural information processing sy stems 32 (2019).
Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770–3781.

Neil He, Menglin Yang, Rex Ying, Yale University
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Pseudo Lorentz Rotation v.s. Pseudo Lorentz Boost: Comparison

|𝑓 𝑥𝑠𝑝𝑎𝑐𝑒 |2−1/𝐾

𝑥𝑡𝑖𝑚𝑒
0

0 𝑓(∙)

𝑥𝑡𝑖𝑚𝑒

𝑥𝑠𝑝𝑎𝑐𝑒

Off-diagonal values are zero

Pseudo Lorentz Rotation: transformation 
on without time and space interaction

| 𝑊𝑥 ቚ
2

− 1/𝐾)𝒆𝟎,

| 𝑊𝑥 ቚ
2

− 1/𝐾)𝒆𝟏:𝒅′

𝑊0,:

𝑊1:,:

𝑥𝑡𝑖𝑚𝑒

𝑥𝑠𝑝𝑎𝑐𝑒

Pseudo Lorentz Boost: transformation on
both time and space-like dimension

Non-zero off-diagonal terms

Neil He, Menglin Yang, Rex Ying, Yale University



Refining Hyperbolic Operations
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Intuition: take advantages of the freedom in curvature – vary the 
curvature through hyperbolic operations/layers

For tangent-space-based operations: 𝑓𝐾,𝐾′
𝑇 𝑥 =

𝐾

𝐾′ 𝑓𝑇,𝐾 𝑥

For fully hyperbolic operations: 𝑓𝐾,𝐾′
𝐹 𝑥 =

𝐾

𝐾′ 𝑓𝐹,𝐾(𝑥)

Recalibrate coefficient for curvature changes:  

𝐾

𝐾′ 𝑥 = exp𝒐
𝐾′

log𝒐
𝐾 𝑥

• Tangent space is  the same across different curvature spaces!

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Residual Connection & Addition
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Recall: Addition is difficult in hyperbolic space!

Tangent-space based method: Möbius Addition based on parallel transport: 

𝑥 ⊕𝑃 𝑦 =  exp𝒙
𝐾(𝑃𝒐→𝒙 log𝒐

𝐾(𝑦) )

Gyrovector Space formulationVector Space formulation

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Residual Connection & Addition
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Recall: Addition is difficult in hyperbolic space!

Fully hyperbolic method: generalized Lorent 
weighted sum

𝑥 ⊕𝐿 𝑦 = α𝒙 + β𝒚

α =
𝑤𝑥

−𝐾 |𝑤𝑥𝒙 + 𝑤𝑦𝒚|
ℒ

β =
𝑤𝑦

−𝐾 |𝑤𝑥𝒙 + 𝑤𝑦𝒚|
ℒ

𝑤𝑥 , 𝑤𝑦 > 0

Image Source: Neil He, Menglin Yang, and Rex Ying. 2025. Lorentzian Residual Neural Networks. In KDD.

𝑥 ⊕𝐿 𝑦𝑥 ⊕𝑃 𝑦

More efficient, stable, and 
expressiveNeil He, Menglin Yang, Rex Ying, Yale University



Euclidean Self-Attention

7/5/2025 62

Self-attention is a vital component in Euclidean Transformer-based foundation models, e.g.

• LLMs – text data

• ViTs – visual data

• CLIP models – multi-modal data

The key is to compute a weighted sum of value vector {𝑉𝑗} using weights based on similarity scores of keys {𝐾𝑗} 
and queries {𝑄𝑖}

𝑍𝑖 = 

𝑗=1

exp(𝑄𝑖𝐾𝑗
𝑇/ 𝑑′)

σ𝑗=1 exp(𝑄𝑖𝐾𝑗
𝑇/ 𝑑′)

𝑉𝑗 

How to generalize midpoint operations to 
hyperbolic space?

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Midpoint Operations
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Image Source: Neil He, Menglin Yang, and Rex Ying. 2025. Lorentzian Residual Neural Networks. In KDD.

Hyperbolic midpoint has close forms in Lorentz model 𝐿𝑀𝑖𝑑𝐾, Poincare mode 𝑃𝑀𝑖𝑑𝐾, and Klein model 
𝐾𝑀𝑖𝑑𝐾  (Einstein Midpoint)
• All of these operations are equivalent under isometric mappings 

Lorentzian Midpoint

𝐿𝑀𝑖𝑑𝐾 𝑥1, … , 𝑥𝑁; 𝑣𝑖 =
σ𝑗 𝑣𝑗𝑥𝑗

−𝐾 | σ𝑗 𝑣𝑗𝑥𝑗|
ℒ

Poincaré Midpoint

𝑃𝑀𝑖𝑑𝐾 𝑥1, … , 𝑥𝑁; 𝑣𝑖 =
1

2
⊗𝐾

σ𝑗 𝑣𝑗𝜆𝑥𝑖
𝐾 𝑥𝑗

σ𝑗 |𝑣𝑗|(𝜆𝑥𝑖

𝐾 −1)

𝜆𝑥
𝐾 =

2

1 + 𝐾||𝑥||2

Gyrovector space scalar multiplication: implemented through 𝑓𝑇,𝐾

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Midpoint Operations
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Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. 2019. Lorentzian distance learning for hyperbolic representations. In ICML. PMLR, 3672–3681.

Hyperbolic midpoint has close forms in Lorentz model 𝐿𝑀𝑖𝑑𝐾, Poincare mode 𝑃𝑀𝑖𝑑𝐾, and Klein model 
𝐾𝑀𝑖𝑑𝐾  (Einstein Midpoint)
• All of these operations are equivalent under isometric mappings 

Lorentzian Midpoint

𝐿𝑀𝑖𝑑𝐾 𝑥1, … , 𝑥𝑁; 𝑣𝑖 =
σ𝑗 𝑣𝑗𝑥𝑗

−𝐾 | σ𝑗 𝑣𝑗𝑥𝑗|
ℒ

Poincaré Midpoint

𝑃𝑀𝑖𝑑𝐾 𝑥1, … , 𝑥𝑁; 𝑣𝑖 =
1

2
⊗𝐾

σ𝑗 𝑣𝑗𝜆𝑥𝑖
𝐾 𝑥𝑗

σ𝑗 |𝑣𝑗|(𝜆𝑥𝑖

𝐾 −1)

𝜆𝑥
𝐾 =

2

1 + 𝐾||𝑥||2

Gyrovector space scalar multiplication: implemented through 𝑓𝑇,𝐾

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Self-Attention
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Image Source: Neil He, Menglin Yang, and Rex Ying. 2025. Lorentzian Residual Neural Networks. In KDD.

Hyperbolic self-attention can be formulated with hyperbolic midpoint operations and similarity score 
computed using negative hyperbolic distance

Hyperbolic Self-Attention

𝐿𝐴𝑡𝑡𝑒𝑛 𝑄, 𝐾, 𝑉 = 𝐿𝑀𝑖𝑑 𝑣1, … , 𝑣𝑁 , 𝛼𝑖,𝑗 𝑗=1

𝑃𝐴𝑡𝑡𝑒𝑛 𝑄, 𝐾, 𝑉 = 𝑃𝑀𝑖𝑑 𝑣1, … , 𝑣𝑁 , 𝛼𝑖,𝑗 𝑗=1

Attention Score

𝛼𝑖,𝑗 =
exp(−𝑑𝐻

2 𝑞𝑖 , 𝑣𝑗 )

σℓ exp(−𝑑𝐻
2 (𝑞𝑖 , 𝑣ℓ))

 



Hyperbolic Linear-Attention
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Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770 –3781.

Hyperbolic self-attention requires quadratic time complexity w.r.t. input tokens: 

• Many applications such as graph Transformers requires the model to handle long token sequences

Solution: linear time approximation for attention mechanism

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Linear-Attention Cont'd
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Image Source: Neil He, Menglin Yang, and Rex Ying. 2025. Lorentzian Residual Neural Networks. In KDD.

Notations
𝑄′ = 𝜙 𝑄𝑠 , 𝐾′ = 𝜙 𝐾𝑠 , 𝑉′ = 𝜙 𝑉𝑠

𝜙 𝑥 =
|| 𝑥||

|| 𝑥𝑝||
𝑥𝑝

𝑥 = 𝑅𝑒𝐿𝑈(𝑥)/𝑡 
𝑡, 𝑝 parameters

𝑋𝑠 denotes the space-like dimension

Hyperbolic Linear Attention

𝐿𝑖𝐴𝑡𝑡𝑛𝐾1,𝐾2
𝑄, 𝐾, 𝑉 = ||𝑍||2 −

1

𝐾2
, 𝑍

𝑇

+ 𝑓𝐾1,𝐾2

𝐹 (𝑉𝑠)

𝑍 =
𝑄′(𝐾′𝑇𝑉′)

𝑄′(𝐾′𝑇𝟏)



Hyperbolic Linear-Attention Cont’d
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Image Source: Neil He, Menglin Yang, and Rex Ying. 2025. Lorentzian Residual Neural Networks. In KDD.

Hyperbolic Linear Attention
𝑄′ = 𝜙 𝑄𝑠 , 𝐾′ = 𝜙 𝐾𝑠 , 𝑉′ = 𝜙 𝑉𝑠

𝐿𝑖𝐴𝑡𝑡𝑛𝐾1,𝐾2
𝑄, 𝐾, 𝑉 = ||𝑍||2 −

1

𝐾2
, 𝑍

𝑇

+ 𝑓𝐾1,𝐾2

𝐹 (𝑉𝑠)

𝑍 =
𝑄′(𝐾′𝑇𝑉′)

𝑄′(𝐾′𝑇𝟏)



Hyperbolic Normalization Methods
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Normalization methods are critical for neural network and foundation models, e.g.

• Layer normalization in Transformers
• Batch normalization in Convolutional Neural Networks

Considerations: 
• Meaningful normalizing operations
• Computational efficiency

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Normalization Methods Cont’d
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Consideration 1: Meaningful normalization – similar to the Euclidean case, the goal is to center the 
feature vectors across batches/layers and scale the keep the variance of their norms within a 
manageable range
• Initial work proposed using the Fréchet Mean
• However, this is computational expensive

• Up to 77% of all compute in the forward pass in hyperbolic CNNs!

Consideration 2: Finding computationally efficient methods while maintaining consideration 1

References: Max van Spengler, Erwin Berkhout, and Pascal Mettes. 2023. Poincaré ResNet. CVPR (2023)

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Batch Normalization
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Method 1: use hyperbolic midpoint operations instead of Fréchet mean
• Approximately centering the vectors at the origin

Compute mean 𝜇 = 𝑃𝑀𝑖𝑑𝐾 𝑥1, … , 𝑥𝑁, 1  (or 𝜇 = 𝐿𝑀𝑖𝑑𝐾(𝑥1, … , 𝑥𝑁, {1}))

Compute variance 𝜎2 =
1

𝑁
σ𝑖 𝑑𝐻

2 (𝑥𝑖, 𝜇)

Return normalization term 𝑥𝑖 = exp𝛽
𝐾(

𝛾

𝜎
𝑃𝜇→𝛽(log𝜇

𝐾(𝑥𝑖)))

Learnable parameters

References: Max van Spengler, Erwin Berkhout, and Pascal Mettes. 2023. Poincaré ResNet. CVPR (2023)
Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. 2024. Fully Hyperbolic Convolutional Neural Networks for Computer Vision. In ICLR. 

Set new mean as learnable 𝛽

Optional: re-centering at the origin 
first: simple geodesics at the origin

𝑃𝑜→𝛽(
𝛾

𝜎
𝑃𝜇→𝑜(log𝜇

𝐾 𝑥𝑖 ))

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Layer Normalization
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Method 2: use fully hyperbolic formulation in Lorentz space
• Computationally efficient
• Retain normalizing capabilities

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: 
Exploring efficient transformer fully in hyperbolic space. In KDD. 3770–3781
Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex 
Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts. arXiv preprint 
arXiv:2505.24722 (2025).

Normalizing the space-like dimension: 𝑦𝑠 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥𝑠)(or 𝑦𝑠 = 𝑅𝑆𝑀𝑁𝑜𝑟𝑚 𝑥𝑠 , etc)

Compute the time-like dimension and return normalized vectors:

||𝑦𝑠||2 −
1

𝐾
, 𝑦𝑠

𝑇

Normalizing space dimension approximates 
normalization locally and centers around the 

origin: 𝑜 = −
1

𝐾
, 0, … , 0

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Positional Encoding
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Positional encodings (PE) enables the model to learn ordering information of tokens in the input sequence

References: Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, and Rex Ying. 2024. Hypformer: Exploring efficient transformer fully in hyperbolic space. In KDD. 3770–3781
Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts. arXiv preprint 
arXiv:2505.24722 (2025).
Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2021. Fully Hyperbolic Neural Networks. arXiv:2105.14686 (2021).

Learn relative positional information: 
• Though hyperbolic addition: 𝑃𝐸𝐾 𝑥 = 𝑥 ⊕𝐿 𝜖𝑓𝐹,𝐾(𝑥); 𝜖 learnable parameters
• Adding positional encoding as bias term in 𝑓𝐹,𝐾

Assumes PE also follows a linear layer 

Pros of relative positional encoding:
• Improves generalizability to different sequence length
• Improves context understanding
Cons of relative positional encoding:
• Introduces additional parameters and computational/memory costs
• Potential overfitting & requires further tuning

Neil He, Menglin Yang, Rex Ying, Yale University



Hyperbolic Rotary Positional Encoding
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Alternative: Rotary incorporates aspects from both absolute and relative encoding method
• Euclidean RoPE: apply rotational matrix to feature vectors

Neil He, Rishabh Anand, Hiren Madhu, Ali Maatouk, Smita Krishnaswamy, Leandros Tassiulas, Menglin Yang, and Rex Ying. 2025. HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts. arXiv preprint 
arXiv:2505.24722 (2025).

Apply Lorentzian rotation to hyperbolic vectors:

𝐻𝑜𝑃𝐸 𝑧𝑖 = 𝑅𝑖,Θ 𝑧𝑖 𝑠 −
1

𝐾
, 𝑅𝑖,Θ 𝑧𝑖 𝑠

𝑇

Θ =  {𝜃1, … , 𝜃𝑑
2

}

𝑅𝑖,Θ ∈ ℝ𝑑×𝑑 where the diagonal are 2 × 2 block matrices 
𝑅𝑖,𝜃𝑗

, which are 2 × 2 rotation matrices of angle 𝑖𝜃𝑗

𝑧𝑖 can either be query 𝑞𝑖 or key 𝑘𝑖

• Long-term decay: the attention score 
between a key-query pair decays 
when the relative position increases

• Learning Complex Relations: 
attention heads with HoPE can learn 
diagonal (attends to only itself) and 
off-diagonal (attends to only 
predecessor) attention patterns

• Robustness: robust attention across 
arbitrary relative distances

Neil He, Menglin Yang, Rex Ying, Yale University



Part 3: Hyperbolic Foundation Models (70 Minutes)



Our Approaches: Hyperbolic Residual Connection

• Euclidean residual connection relies on 
vector addition

• This is not a valid hyperbolic operation!

7/5/2025 76

x

x+y

out!!

• Previous methods: Parallel Transport, Tangent Space, Space 
Addition (not shown)

• Problems: Numerical Instability, Mapping Errors, Non-
commutative, Computational Inefficiency, Lack of 
Geometric Meaning

Neil He, Menglin Yang, Rex Ying, Yale University



Our Approach: LResNet

• We propose a general addition method that computes a (normalized) weighted sum of x and f(x)

7/5/2025 77

𝑤𝑥 , 𝑤𝑦 ∈ {ℝ2 − (0,0)}

Normalizing 
Weight

Ensures the sum 
is valid in 

hyperbolic space

● Provably numerical stable
○ The denominator is never 

zero!
● No mapping errors
● Time efficiency

● Over 2000X speedup on 
random vectors with 
dimension 4092 and size 
100,000

● Previous methods are special 
cases

● In the geodesic sense

Neil He, Menglin Yang, Rex Ying, Yale University



Our Approaches: Hyperbolic Transformer - HypFormer

Challenge 1: Problematic Transformation

❖  Tangent space Based Transformation: high computation cost, mapping errors

❖  Fully Lorentz Transformation: cannot preserve relative distance, complex computations

 Proposed Method: Direct Lorentz Transformation with Distance Preservation

Challenge 2: Incomplete Modules

❖ Not all necessary basic modules for Transformer are well-defined, e.g. layer normalization and positional encoding

 Proposed Method: Definition all necessary basic modules for hyperbolic Transformer

Challenge 3: Quadratic Time Complexity

❖ Cannot process long-sequence input tokens and large-scale graphs

Proposed Method: Linear time complexity, w.r.t number of token and nodes

7/5/2025 79Neil He, Menglin Yang, Rex Ying, Yale University



Challenges: Faithful Hyperbolic Modules

  FeedForward Layer (tangent space method)

  Multi-Head Attention (quadratic)

 Positional Encoding

 Add & LayerNorm

 Multihead concatation

 Dropout & ReLU operations

7/5/2025 80Rex Ying, Yale University

Core modules in Transformer

1. FeedForward Layer

2. Multi-Head Attention

3. Addition and LayerNorm

4. Positional Encoding

1

4

23



Solution to Challenge 1 & 2: Two Basic Transformation Block

7/5/2025 81Rex Ying, Yale University

• CAR: Curvature Adaptative Rotation Transformation, defining ReLU, LayerNorm, BatchNorm, Concatnation

• CAB: Curvature Adaptative Boost Transformation,  defining Linear Transformation

• Guarantee that the results are valid hyperbolic embeddings

𝑦𝐻 =
𝐾′

𝐾
|𝑊𝑥𝑡𝑖𝑚𝑒,𝑠𝑝𝑎𝑐𝑒 ቚ

2
− 𝐾′

𝑡𝑖𝑚𝑒−𝑙𝑖𝑘𝑒 𝑑𝑖𝑚

,
𝐾′

𝐾
𝑊𝑥𝑡𝑖𝑚𝑒,𝑠𝑝𝑎𝑐𝑒

𝑠𝑝𝑎𝑐𝑒−𝑙𝑖𝑘𝑒 𝑑𝑖𝑚

 𝑦𝐻 =
𝐾′

𝐾
|𝑓 𝑥𝑠𝑝𝑎𝑐𝑒 ቚ

2
− 𝐾′

𝑡𝑖𝑚𝑒−𝑙𝑖𝑘𝑒 𝑑𝑖𝑚

,
𝐾′

𝐾
𝑓 𝑥𝑠𝑝𝑎𝑐𝑒

𝑠𝑝𝑎𝑐𝑒−𝑙𝑖𝑘𝑒 𝑑𝑖𝑚

CAR CAB

(1) Computationally efficient

(2) Adaptive curvature; and preserves the relative distance after altering the curvatures

(3) Comprehensive set of operations needed in Transformers



Solution to Challenge 1 & 2: Two Basic Transformation Block
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• CAR: Curvature Adaptative Rotation Transformation, for ReLU, LayerNorm, BatchNorm, Concatnation

• CAB: Curvature Adaptative Boost Transformation,  for Linear Transformation

• Guarantee that the results are valid hyperbolic embeddings

𝑦𝐻 =
𝐾′

𝐾
|𝑊𝑥𝑡𝑖𝑚𝑒,𝑠𝑝𝑎𝑐𝑒 ቚ

2
− 𝐾′

𝑡𝑖𝑚𝑒−𝑙𝑖𝑘𝑒 𝑑𝑖𝑚

,
𝐾′

𝐾
𝑊𝑥𝑡𝑖𝑚𝑒,𝑠𝑝𝑎𝑐𝑒

𝑠𝑝𝑎𝑐𝑒−𝑙𝑖𝑘𝑒 𝑑𝑖𝑚

 𝑦𝐻 =
𝐾′

𝐾
|𝑓 𝑥𝑠𝑝𝑎𝑐𝑒 ቚ

2
− 𝐾′

𝑡𝑖𝑚𝑒−𝑙𝑖𝑘𝑒 𝑑𝑖𝑚

,
𝐾′

𝐾
𝑓 𝑥𝑠𝑝𝑎𝑐𝑒

𝑠𝑝𝑎𝑐𝑒−𝑙𝑖𝑘𝑒 𝑑𝑖𝑚

CAR CAB

𝐾′

𝐾
|𝑓 𝑧𝑠𝑝𝑎𝑐𝑒 |2−𝐾′

𝑧𝑡𝑖𝑚𝑒
0

0 𝑓(∙)

𝑧𝑡𝑖𝑚𝑒

𝑧𝑠𝑝𝑎𝑐𝑒

Off-diagonal values are zero
Pseudo Lorentz Rotation: transformation on 

without time and space interaction

𝐾′

𝐾
| 𝑊𝑥 ቚ

2
− 𝐾′)𝒆𝟎,

𝐾′

𝐾
| 𝑊𝑥 ቚ

2
− 𝐾′)𝒆𝟏:𝒅′

𝐾′

𝐾
𝑊0,:

𝐾′

𝐾
𝑊1:,:

1
𝑥

Pseudo Lorentz Boost: transformation on
both time and space-like dimension



Solution to Challenge 3: Hyperbolic Linear Attention 
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The linear attention mechanism is designed through the following steps: (1) linear transformation via CAB 

(denoted as HTC), (2) computation of the linear attention score in the space-like dimension of the 

hyperboloid model, and (3) recalibration.



Experiment Snapshot: Scalability Evaluation
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Successfully working on billion-level graph data 
and process 10K~200K input tokens

GraphFormer
Model

Hyperbolic 
(Graph)Transformer 

(failed!!) 



LLM Integration: Hyperbolic Fine-Tuning (HypLoRA)

Building on existing Euclidean LLMs:

• Maintains flexibility while producing hyperbolic representations

• Leverages pre-trained knowledge

7/5/2025 85Rex Ying, Yale University

Our proposed method

LLR(BA, X) is based on 
our CAB Transformation



Experiment Snapshot: Mathematical Reasoning 
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AQuA: Find out which of the following values is the multiple of 
X, if it is divisible by 9 and 12?
"options": ["A)36", "B)12", "C)3", "D)9", "E)6"]

GSM8K: James decides to run 3 sprints 3 times a week. He runs 60 
meters each sprint. How many total meters does he run a week? 

MAWPS: Paul had 95 pens and 153 books. After selling some 
books and pens in a garage sale he had 13 books and 23 pens 
left. How many books did he sell in the garage sale? 



Experiment Snapshot: Mathematical Reasoning 

7/5/2025 87Rex Ying, Yale University

HypLoRA performs better on harder questions.

HypLoRA introduce higher-order interaction and 

hierarchies-related terms compared with LoRA. 

The update of query Q is related to high-order 

Information and token’s norm

+13%

+13.4%

+11%

+16%

Improvements over LoRA



Case Study
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HypLoRA provides better understanding of number’s hierarchies (especially for these leaf 
tokens) for prediction and accurate computation
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94 80

74380

800
600 255

270 90
35

…
900

916

700 720

750

560

…

86

Numbers (token) are arranaged based 
on their norms in LLaMA 3



Case Study
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HypLoRA provides better understanding of number’s hierarchies (especially for these leaf 
tokens) for prediction and accurate computation
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Efficiency
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Although the proposed method increases the computational burden compared to the original LoRA, 
it remains significantly more efficient than DoRA, one of the state-of-the-art adapters.



Towards Non-Euclidean Foundation Models

“Hyperbolic-fy Operations/Modules in foundation models”, e.g.,

• Residual Connection -> LResNet

• Attention Mechanism -> Hyperbolic Attention

• Linear Layer -> CARB

• Activation -> CAR

• LoRA -> HypLoRA

7/5/2025 91Rex Ying, Yale University

Euclidean Foundation Model

Hyperbolic Foundation Model

But what else??

Goal: Encode geometric structure into the 
model that the model cannot do a good job 
learning otherwise



Towards Non-Euclidean Foundation Models
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Option 1: Fine-tuning Existing Euclidean Foundation Models

• Four Strategies

1. Geometric Prompt Tuning

• Add trainable geometric task-specific prompts

2. Geometric Low-Rank Adaptation

• Project input and multiply low-rank matrices on the manifold

3. Geometric Knowledge Distillation

• Teach student to inherit the manifold structure of the teacher

4. Geometric Transfer Learning

• Learn across domains with aligned geometries

Rex Ying, Yale University



Towards Non-Euclidean Foundation Models

937/5/2025

Option 2: Pretraining from Scratch

• Curvature Estimation/Trainable Curvature

• Graph data: directly from structure topology, e.g. Ricci Curvature

• Non-graph data: estimate through learned embedding

• Non-Euclidean Attention Mechanism

• Define attention score through negative manifold distance

• Other Important Modules

• Positional encoding taking into account manifold constraints

• Residual connections need to be formulated with isometries

• Layer/batch norm need to consider manifold curvature

Rex Ying, Yale University



Towards Non-Euclidean Foundation Models
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Option 3: Hybrid Architectures
• Combine both Euclidean and non-Euclidean components 

• Potentially build experts with different curvatures specializing 
in different types of corpus

• Consider non-Euclidean spaces beyond hyperbolic 
embedding spaces

• Build on top of the first 2 options

Rex Ying, Yale University



Challenges

• Building hyperbolic foundation models would not be simple

• Require developing methods with abundance of knowledge in differential geometry

• Special geometric functions and difficulty in implementing even basic operations, e.g. addition

• Scattered prior research and incompatibilities

• Issues with Existing Tools
• Limited Modules

• Inflexibility and Unintuitive-Usage

• Require extensive geometry knowledge

• Limited Model Support: difficult to build advanced foundation models

• Limited to one formulation of hyperbolic space (Poincare or Lorentz)

957/5/2025 Rex Ying, Yale University



Introducing HyperCore!

• Flexible to Create various SoTA models

• Spotlight Examples: LViT, L-CLIP, Hyperbolic GraphRAG

• Comprehensive Modules and Model Support

• Intuitive Foundation Model Support

• Focus on making it easier to build foundation model pipelines

• User Accessibility

• Use the library without being an expert in hyperbolic geometry

967/5/2025 Rex Ying, Yale University



Library Overview 

• Modules

• Neural network layers (e.g. linear, convolutional, MLR)

• Transformer layers (e.g. softmax self-attention, linear attention, latent attention, positional encoding, 
word embedding, patch embedding)

• Graph related (e.g. graph convolutional layers and neighborhood aggregation)

• Fine-tuning

• Essential modules (e.g. batch and layer normalization, residual connection, pooling layers)

• Optimizers

• Support for different training schemes on Euclidean v.s. manifold parameters

• Manifold

• Basic manifold operations and additional operations (e.g. concatenation and splitting vectors, 
hyperbolic entailment cones)

977/5/2025 Rex Ying, Yale University



Snapshot of Library Taxonomy

987/5/2025 Rex Ying, Yale University



Example: Transformer Block

7/5/2025 99Rex Ying, Yale University

Euclidean Transformer Block Lorentz Transformer Block w/ HyperCore



Hyperbolic Fine-tuning of LLMs – Option 1

• Recreate experiments from HypLoRA: hyperbolic fine-tuning of Gemma-7B and LLaMA3-8B

• Training set GSM8K, MAWPS, MAWPS-single, AQuA, and the math-10K dataset consisting of step-
by-step rationales generated by ChatGPT

• Testing set: part of GSM8K + MAWPS + AQuA

• No overlap with training set

1007/5/2025



New Hyperbolic Foundation Models w/ HyperCore: LViT – Option 2 

• First fully hyperbolic vision transformer with a fine-tuning pipeline, built with 
HyperCore

1017/5/2025



New Hyperbolic Foundation Models w/ HyperCore: L-CLIP – Option 2 

• First fully hyperbolic multi-modal CLIP model

• Compared to MERU, which is a hybrid prior work

1027/5/2025



New Hyperbolic Foundation Models w/ HyperCore: HypGraphRAG – Option 3 

7/5/2025 103Rex Ying, Yale University

First Hyperbolic GraphRAG model:
• Uses a hyperbolic graph encoder
• Uses hyperbolic fine-tuning

Better represent the knowledge graph 
structure



Testing New Hyperbolic Models – LViT

• Image Classification with LViT

• Fine-tuning with HypLoRA on smaller datasets

• Datasets
• ImageNet-1K: 1.2M images of 1,000 classes

• CIFAR10 and CIFAR100: 60K images of 10 (100) classes

• TinyImageNet: 100K images of 200 classes

7/5/2025 104Rex Ying, Yale University

Hyperbolic ResNets

Euclidean ViT

Tangent 
Space ViT

Every hyperbolic model here is 
implemented with HyperCore



Testing New Hyperbolic Models – L-CLIP & Hyperbolic GraphRAG

• Image-Text Retrieval on COCO benchmark with L-CLIP

• Image encoder: LViT; Text encoder: hyperbolic Transformer

• HypGraphRAG: Question-answering tasks in a graph QA dataset (WebQSP)

• Skip-connected hyperbolic GNN; LLaMA3.1-8B fine-tuned with HypLoRA

1057/5/2025

Experimental Goal: To demonstrate what's possible



Future works

7/5/2025 106Rex Ying, Yale University

Ultimate goal: Combine non-Euclidean foundation model with large model for Geometric-aware AI

From hyperbolic space to adaptive curvature space From language model to multimodal models

Examples of generating images from 
corse-grained to fine-grained, aligning human cognition 

process

Non-Euclidean Foundation Model Multimodal LM

Geometric AI
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Thank You
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